Dougherty Valley HS Chemistry - AP Electrochemistry - Practice Multiple Choice Quiz

Worksheet #8

Name: Period: Seat#:

Directions: Show all work and/or annotate with an AP Chem level explanation for non-math answers. Use binder paper as needed.

Standard Reduction Potentials at 25°C E° (volts)

$F_2(g) + 2e^- \rightarrow 2F^-(aq)$	+2.87
$Au^{3+} + 3e^{-} \rightarrow Au(s)$	+1.50
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H_3O^+(aq) + 4e^- \rightarrow 6H_2O(l)$	+1.23
$Br_2(l) + 2e^- \rightarrow 2Br^-(aq)$	+1.08
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$Hg_2^{2+}(aq) + 2e^- \rightarrow 2Hg(l)$	+0.79
$I_2(s) + 2e^- \rightarrow 2I^-(aq)$	+0.535
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.337
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \to \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$\operatorname{Sn^{2+}}(\operatorname{aq}) + 2e^{-} \to \operatorname{Sn}(s)$	-0.14
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.7632
$2H_2O(1) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.828
$Al^{3+}(aq) + 3e^- \rightarrow Al(s)$	-1.66
$K^+(aq) + e^- \rightarrow K(s)$	-2.93
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.045

1) Which of the following is the correct cell notation for the reaction

$$Hg_2^{2+} + Cd(s) \rightarrow Cd^{2+} + 2Hg(l)$$

- a) $Cd^{2+} | Cd | | Hg^{2+} | Hg$
- $b) \quad Cd^{2+} \, | \, Hg_2{}^{2+} \, | \, | \, Cd \, | \, Hg$
- c) $Cd | Cd^{2+} | | Hg^{2+} | Hg$
- d) $Cd^{2+} | Hg | | Hg^{2+} | Cd$
- e) $Hg \mid Cd \mid \mid Hg \stackrel{2+}{_2} \mid Cd^{2+}$
- **2)** Consider an electrochemical cell where the following reaction takes place:

$$3Sn^{2+}(aq) + 2Al(s) \rightarrow 3Sn(s) + 2Al^{3+}(aq)$$

Which of the following is the correct cell

notation for this cell?

- a) Al $|Al^{3+}| |Sn^{2+}| Sn$
- b) $Al^{3+} |Al| |Sn| Sn^{2+}$
- c) $\operatorname{Sn} | \operatorname{Sn}^{2+} | | \operatorname{Al}^{3+} | \operatorname{Al}$
- d) Sn | Al³⁺ | | Al | Sn²⁺
- e) $Al | Sn^{2+} | | Sn | Al^{3+}$

3) Given the two half reactions and their potentials, which net reaction is spontaneous?

 $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$

 $E^{\circ} = -0.25 \text{ V}$

 $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$

 $E^{\circ} = -2.37 \text{ V}$

- $a) \quad Ni(s) + Mg^{2+}(aq) \longrightarrow Mg(s) + Ni^{2+}(aq)$
- b) $Ni^{2+}(aq) + Mg(s) \rightarrow Mg^{2+}(aq) + Ni(s)$
- c) $Ni(s) + Mg(s) \rightarrow Mg^{2+}(aq) + Ni^{2+}(aq)$
- d) $Mg^{2+}(aq) + Ni^{2+}(aq) \rightarrow Mg(s) + Ni(s)$
- e) $Mg^{2+}(aq) + Mg(s) \rightarrow Ni(s) + Ni^{2+}(aq)$
- **4)** Calculate E° for the following reaction:

$$Sn^{4+}(aq) + 2K(s) \rightarrow Sn^{2+}(aq) + 2K^{+}(aq)$$

- a) +6.00 V
- d) +2.78 V
- b) -3.08 V
- e) -2.78 V
- c) +3.08 V
- **5)** Calculate E° for the following reaction:

$$2Al^{3+}(aq) + 3Cd(s) \rightarrow 2Al(s) + 3Cd^{2+}(aq)$$

- a) -2.06 V
- d) -4.52 V
- b) +4.52 V
- e) -1.26 V
- c) +2.06 V
- **6)** Using data from the reduction potential table and the reaction

 $2Ag(s)+Pt^{2+}(aq)\to Pt(s)+2Ag^+(aq)$ $E^\circ=0.38~V$ calculate the standard reduction potential of the half-reaction

$$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$$

- a) -1.18 V
- d) 1.18 V
- b) -0.40 V
- e) 2.00 V
- c) 0.40 V
- , =...
- **7)** Using data from the reduction potential table, predict which of the following is the best *oxidizing* agent.
 - a) F₂

- d) Ag+
- b) Ag
- e) $A1^{3+}$
- c) Sn^{4+}

- 8) An electrochemical cell of notation $Pd \mid Pd^{2+} \mid \mid Cu^{2+} \mid Cu$ has an $E^{\circ} = -0.65$ V. If we know that the standard reduction potential of Cu^{2+}/Cu is $E^{\circ} = 0.34$ V, what is the standard reductionpotential for Pd^{2+}/Pd ?
 - a) -0.99 V
- d) 0.62 V
- b) -0.31 V
- e) +0.99 V
- c) +0.31 V
- 9) The standard cell potential for $2S_1^{4+}(\alpha \alpha) + 2A_1(\alpha) + 2S_1^{2+}(\alpha \alpha) + 2A_1(\alpha)$

$$3\mathrm{Sn^{4+}}(\mathrm{aq}) + 2\mathrm{Al}(\mathrm{s}) \to 3\mathrm{Sn^{2+}}(\mathrm{aq}) + 2\mathrm{Al^{3+}}(\mathrm{aq})\mathrm{is}$$
 $\mathrm{E^{\circ}} = 1.81~\mathrm{V}.$ What is $\mathrm{E_{cell}}$ when $[\mathrm{Sn^{4+}}] = 1.0,$ $[\mathrm{Sn^{2+}}] = 1.0~\mathrm{x}~10^{-2},$ and $[\mathrm{Al^{3+}}] = 1.5~\mathrm{x}~10^{-3}$ at 298 K.

- a) 1.70 V
- d) 1.86 V
- b) 1.76 V
- e) 1.93 V
- c) 1.81 V
- **10)** Predict the product at the anode when electric current is passed through a solution of KI.
 - a) $I_2(1)$
- d) **K**(s)
- b) $K^+(aq)$
- e) $O_2(g)$
- c) $H_2(g)$
- **11)** If electric current is passed through aqueousLiBr, the product at the cathode would be _____and the product at the anode would be _____.
 - a) $H_2O(1)$, $Li^+(aq)$
- d) $Br_2(1), H_2(g)$
- b) $Br_2(1)$, Li(s)
- e) $H_2(g)$, $Br_2(1)$
- c) Li(s), $Br_2(l)$
- **12)** How long would it take to deposit 1.36 g of copper from an aqueous solution of copper(II) sulfate by passing a current of two amperes through the solution?
 - a) 2070 sec
- d) 736 sec
- b) 1.11 x 10⁻⁵ sec
- e) 1030 sec
- c) 2570 sec
- **13)** If a current of 6.0 amps is passed through a solution of Ag⁺ for 1.5 hours, how many gramsof silver are produced?
 - a) 0.60 g
- d) 3.0 g
- b) 36 g
- e) 1.0 g
- c) 0.34 g

- **14)** How is aluminum currently produced inindustry?
 - a) by reduction of Al³⁺ in Al₂O₃ with Na(s)
 - b) electrochemical reduction of pure Al_2O_3 to give Al and O_2
 - c) electrolysis of AlF₃ to give Al and F₂
 - d) electrolysis of a mixture of Al₂O₃ and Na₃AlF₆ to give Al and O₂
 - e) by reduction of Al³⁺ in Al₂O₃ with CO(g)
- **15)** How was aluminum originally made?
 - a) the Hall-Heroult process
 - b) Al₂O₃ mixed with cryolite is electrolyzed
 - c) electrolysis of molten Al₂O₃
 - d) mining and purifying directly
 - e) reducing AlCl₃ with sodium
- **16)** Under acidic conditions the bromate ion is reduced to the bromide ion. Write the balanced half-reaction for this process.
 - a) $BrO_3^- + 6H^+ + 6e \rightarrow Br^- + 3H_2O$
 - b) $2BrO_3^- + 6H^+ \rightarrow Br_2^- + 6H_2O + 3e$
 - c) $BrO_3^- + 6H_2O + 10e \rightarrow Br_2^- + 12H^+ + 3O_2$
 - d) $2BrO_3^- + 6H_2O \rightarrow 2Br^- + 12H^+ + 6O_2 + 8e$
 - e) $2BrO3^{-} + 6H^{+} \rightarrow Br_{2}^{-} + 3H_{2}O + 3e$
- **17)** Balance the following redox equation which occurs in acidic solution.

$$N_2H_4(g) + BrO_3^-(aq) \rightarrow Br^-(aq) + N_2(g)$$

- a) $3N_2H_4 + BrO_3^- \rightarrow 3N_2 + Br^- + 3H_2O + 6H^+$
- b) $N_2H_4 + BrO_3^- + 2H^+ \rightarrow 2Br^- + N_2 + 3H_2O$
- c) $3N_2H_4 + 2BrO_3^- + 12H^+ \rightarrow$

$$3N_2 + 2Br^{\text{-}} + 6H_2O + 12H^{\text{+}}$$

- d) $N_2H_4 + 2BrO_3^- + 8H^+ \rightarrow 2Br^- + N_2 + 6H_2O$
- e) $3N_2H_4 + 2BrO_3^- \rightarrow 3N_2 + 2Br^- + 6H_2O$
- **18)** Which of the following is NOT a redox reaction?
 - a) $2HgO(s) \rightarrow 2Hg(1) + O_2(g)$
 - b) $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$
 - c) $2HCl(aq) + Zn(s) \rightarrow H_2(g) + ZnCl_2(aq)$
 - d) $H_2CO_3(aq) \rightarrow H_2O(1) + CO_2(g)$
 - e) $2KClO_3 \rightarrow 2KCl(s) + 3O_2(g)$

18' D	12. A	9. D
17. E	II.E	3. E
A .91	A .01	J.4
12. E	9. E	3. B
It' D	8. E	A .2
13. B	A.7	J.C
	SJ	<u>swanA</u>